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Abstract 
Steganography deals with secrecy and convert communication and today the techniques for countering this in the 
context of computer forensics has somewhat fallen behind. This paper will  discuss on how steganography is used 
for information hiding and its implications on computer forensics. While this paper is not about recovering 
hidden information, tools that are used for both steganography and steganalysis is evaluated and identifies the 
shortcomings that the forensic analysts would face. In doing so this paper urges on what the stakeholders in the 
field of computer forensics needs to do to keep ahead of criminals who are using such techniques to their 
advantage and obscure their criminal activities.  

Keywords 

Steganalysis, Steganography, Information Hiding, LSB, Stegdetect, Steghide, Outguess, Chi-Square, Digital 
Invisible Ink Toolkit 

 

INTRODUCTION 
One of the first widely used method for secure communication was steganography, also referred to as secret 
writing. A variety of techniques such as the application of invisible ink and masking the secret text inside an 
inconspicuous text existed during the early days (Pieprzyk, Hardjono & Seberry, 2003). It even dates back to 
ancient Greeks who practised the art of hiding messages by tattooing onto the shaved heads of messengers. 
Today, steganography has taken new meaning and is referred to the science of hiding messages in different 
electronic media such as graphic, audio, and video files (Schneier, 2000). 

 

Besides the reasons for covert communication to maintain secrecy, steganography is also used to protect  
intellectual property rights using watermarking techniques that embed a digital fingerprint in the media (Silman, 
2001). While each of these aforementioned purposes of steganography has its own applications, this paper will 
be concerned with the former. 

 

Historically, much attention has been given on cryptography to ensure the secrecy of confidential information 
whether it is for storage or communication, however in recent times, different motivations have led people to 
pursue even more guaranteed approaches. Krenn (2004) reports that terrorist organisations use steganography to 
send secret messages using websites and newsgroups according to claims by the United States government. 
Although there is no substantial evidence supporting these claims, one would wonder why such an approach 
maybe attractive and realistic for such organisations. Other sources such as Kelley (2001a, 2001b), and 
McCullagh (2001) have also made similar claims. According to Schneier (2000), the privacy offered by 
steganography is far beyond that provided by encryption. This is because the goal of steganography is to hide 
the secret while encryption simply makes the secret unreadable.  

 

New steganographic techniques are being developed and information hiding is becoming more advanced based 
on the motives of its use (Krenn, 2004). Besides the hype of terrorists using steganography, very recently there 
has been a case of corporate espionage reported by Phadnis (2007), where confidential information was leaked 
to a rival firm using steganographic tools that hid the information in music and picture files. Although the 
perpetrator was caught in this case, it does give an idea of the wide landscape in which steganography can be 
applied in. 

 



This paper will focus on steganography of graphic or image files. It will describe some technical aspects of 
steganography used by different tools that are specific to certain types of image files. Following that, 
steganalysis techniques used to detect the presence of hidden information from the forensic analyst's point of 
view will be discussed. Finally, the limitations in steganalysis will be presented along with the evaluation of 
some steganalysis tools. 

 

TECHNICAL PERSPECTIVE OF STEGANOGRAPHY 
Steganography may be implemented using a variety of techniques and methods and a steganographic tool may 
employ any such method or a combination or even variations of such methods. These methods may range from 
the use of Least Significant Bit (LSB), manipulation of image and compression algorithms, and modifications of 
image properties such as its luminance (Johnson & Jajodia, 1998). 

 

The use of LSB is the most commonly used technique  for image steganography. Such tools are also referred to 
as image domain tools that manipulate the LSB using bitwise methods (Krenn, 2004). Since this is more like 
using noise to hide information in the LSB, small variations in the LSB are unnoticeable to the human eye 
(Wayner, 2002). However, one major limitation in the use of LSB is the amount of usable space to hide the 
secret message, thus a suitable cover image is essential. If the cover image does not satisfy the capacity 
requirements to hide the data, the steganographic image would appear to be suspicious (Krenn, 2004). 

 

Furthermore, the success is also dependent on a reliable compression algorithm to ensure that the hidden 
message is not lost after the transformation (Krenn, 2004). According to Silman (2001), the most commonly 
used compression algorithms are Windows Bitmap (BMP), Graphic Interchange Format (GIF), and Joint 
Photographic Experts Group (JPEG). When LSB method is used, lossless compression algorithms such as BMP 
and GIF are preferable. This is because lossy compression algorithms such as JPEG are mainly used to save on 
storage space due to the fact that the compression gets rid of unwanted noise,  limiting the amount of space that 
can be used for steganography (Wayner, 2002). 

 

For lossy algorithms like JPEG, usually when the image is 24bits or grayscale, a more robust approach is to use 
masking/filtering where the luminance of parts of the image are modified. A more complex way to hide 
information, particularly in JPEG files is to use Discrete Cosine Transformations (DCT). DCT is also used by 
the JPEG compression algorithm, and the resulting steganographic image does not have any detectable visible 
changes as the technique makes use of the frequency domain of the image (Krenn, 2004). 

 

STEGANALYSIS TECHNIQUES 
Steganalysis is mostly about the discovery (Silman, 2001) and simply identifying the existence of a hidden 
message (Wayner, 2002).  

 

Some literature such as Silman (2001) also refer to steganalysis as the destruction of the hidden information. 
And it can be done even if there is no knowledge of the existence of the hidden information (Krenn, 2004). 
However, forensics is about finding information and not destroying it. But it may indeed be reasonable to do so 
in other contexts. This is mainly because recovering hidden information can become rather complex and 
sometimes impossible without knowing which tool or technique was used for the steganography (Johnson & 
Jajodia, 1998). Even if the steganographic tool was somehow discovered, extracting the hidden information can 
prove to be rather daunting as most algorithms employ cryptographic techniques to scramble the secret message 
when it is embedded (Wayner, 2002). Although it use to be possible in classical steganographic systems where 
the security lies in the secrecy of the encoding scheme (Provos & Honeyman, 2002), modern systems have 
adopted Kerchoff's principle of cryptography, and the security depends on the secret key that is used to encode 
and not the encoding scheme (Provos & Honeyman, 2002; Krenn, 2004). 

 

Therefore the challenge of recovering the hidden information remains for the forensic investigator, but the first 
step would be to identify suspicious articles with hidden information. According to Silman (2001) steganalysis 
attacks depend on the information that is available to the steganalyst such as:  



 when only the steganographic object is available 

 when the steganographic algorithm is known and the steganographic object is available 

 when the steganographic object and the original cover object is available 

 when both the steganographic and the cover object is available and the steganographic algorithm is 
known 

 

If both the steganographic object and the cover object is available, checking and comparing file attributes such 
as size, file format, last modified timestamps, and colour palette can give some clues whether some information 
has been hidden (Krenn, 2004). However in forensic investigations, the most likely situation the investigator 
will be in is when only the steganographic object is available, and that is assuming if an object can be classified 
as a steganographic object in the first place. In such a situation it would not be possible to make comparisons 
with attributes of the original cover image and the steganographic image such as size as mentioned by (Silman, 
2001).  

 

Steganographic systems generally leave detectable traces (Provos & Honeyman, 2002). This is because often the 
process alters media properties and introduces degradations or abnormal characteristics that can be used as 
steganographic signatures for detection (Johnson & Jajodia, 1998). Although these cannot be detected by the 
human eye due to careful application of steganography, the signatures left can be electronically discovered 
(Silman, 2001). These signatures can also be used to identify the steganographic tools and techniques (Johnson 
& Jajodia, 1998), thereby aiding the investigator in the retrieval of the hidden information. 

 

A commonly used steganographic technique is to make use of the LSB data, because the LSB data mostly 
appears random to a human observer although it contains hidden patterns (Wayner, 2002). Statistical analysis of 
the LSB data is a widely used method for detecting these patterns (Krenn, 2004). One of the most common 
pattern is a correlation between the High-Order Bits and the LSB which is often introduced by the hardware, 
such as the camera, used to generate the original data (Wayner, 2002). This attack is mostly successful because 
most of the steganographic algorithms operate under the assumption that the LSB is random, however statistical 
analysis can detect changes made to the LSB  especially in the case of encrypted messages as it is more random 
and has higher entropy (Krenn, 2004). 

 

Comparisons and analysis of numerous original and steganographic images can reveal anomalies and patterns 
can be classified. These can be detected due to factors such as unusual sorting of colour palettes, relationship 
between colours in colour indexes, and in exaggerated noise (Johnson & Jajodia, 1998).   

 

LIMITATIONS IN STEGANALYSIS 
Although there are some techniques that can detect steganography there are major problems that steganalysts 
face. Even if there are noticeable distortions and noise, predictable patterns cannot always be detected. Some 
steganographic techniques are particularly difficult to detect without the original image (Johnson & Jajodia, 
1998). And in most cases, it is highly unlikely that a forensic investigator will be conveniently presented with 
the steganographic and original image. 

 

To avoid detection, some steganographic technique spread the information and the diffusion makes it harder and 
less suspicious for detection. Some steganographic tools even use Random Number Generators (RNG) to make 
the LSB choosing process more random and to distribute the distortions throughout the file (Wayner, 2002) 

 

According to Wayner (2002) another approach in defending against statistical attacks is not to saturate the cover 
image by packing in too much data, thereby leaving most of the LSB untouched hence making it highly 
indistinguishable from an untouched pure file. 

 



Even until today, most steganalysis techniques are based on visual attacks and methods beyond this are being 
explored. Unfortunately a general steganalysis technique has not been devised (Johnson & Jajodia, 1998). While 
visual attacks are more prominent, JPEG images, which is one of the most commonly distributed type of image 
format, the steganographic modifications take place in the frequency domain. This means that this type of 
steganography is not susceptible to visual attacks unlike in image formats such as GIF images where the 
modifications happen in the spatial domain (Provos & Honeyman, 2002). 

 

In order to verify the claims about terrorists using the Internet to distribute secrets using steganography, Niels 
Provos created a cluster that scans images from newsgroups to detect steganographic content (Krenn, 2004). In 
Provos' and Honeyman's (2002) work, upon investigating two million images from particular sources in the 
Internet, they were unable to find a genuine message and suggest the following explanations: 

 steganography is not significantly used on the Internet 

 the sources of the images analysed are not used for steganographic communication 

 the steganographic systems detectable by the study are not being used 

 strong passwords, not susceptible to dictionary attacks have been used by all steganographic systems 
users. 

For reasons that no hidden messages were discovered, it raises the question of the practicality of such detection 
systems (Krenn, 2004). 

 

EVALUATION OF STEGANALYSIS TOOLS 
In order to evaluate the steganalysis tools, it is essential that the whole process is forensically sound to ensure 
the validity of the findings. Therefore, the following are the steps that will be followed throughout the process: 

1. obtain the steganographic and steganalysis tools 

2. verify the tools (to ensure the tools is doing what it claims) 

3. obtain cover images, and generate MD5 hashes 

4. apply steganalysis on cover images, and generate MD5 hashes 

5. generate steganographic images, and generate MD5 hashes 

6. apply steganalysis on the steganographic image, and generate MD5 hashes 

In each of the steps where the cover images or the steganographic images are involved, MD5 hashes have been 
used to verify whether the image has changed in any sense. 

Obtaining the tools 

To keep the evaluation as realistic as possible, and the circumstances applicable to a wide range of users, the 
steganographic tools have been chosen based on how easy it is to obtain it, and the type of images it deals with. 
The tools that will be used are Steghide (Steghide Website, 2003), Outguess (Provos, 2004), and Digital 
Invisible Ink Toolkit (DIIT) (Hempstalk, 2005). All these tools are freely available, including their source codes, 
and can be downloaded by anyone from the Internet. Which means that anyone with programming experience 
can even make changes to the steganographic algorithms used. They can also be used on both Windows and 
Linux platforms. Therefore, this covers a wide range of users, who can make use of these tools. The following 
table (table 1) gives their version information and the output steganographic image format. 

 

Table 1: Steganographic Tools 
Tool Version Output Image Format Platform Source 

Steghide 0.5.1-8 JPEG, BMP Windows & Linux (Steghide Website, 
2003) 

Outguess 1:0.2-6 JPEG, PNM Windows & Linux (Provos, 2004) 

Digital Invisible Ink 
Toolkit (DIIT) 

1.5 PNG, BMP Windows, Linux & 
Mac OS 

(Hempstalk, 2005) 



 

Steghide can be used to hide data in JPEG and BMP image formats. It uses a graph-theoretic approach to 
perform the steganography (Steghide Website, 2003). More detailed descriptions of the tool can be found in the 
documentations available on Steghide Website (2003). Outguess performs steganography by inserting the 
hidden information into the redundant bits of the cover image. Its steganographic technique is able to protect the 
steganographic JPEG image from statistical attacks based on frequency counts (Provos, 2004).  DIIT is a 
steganographic tool that allows to use four highly customisable algorithms to perform the steganography. The 
algorithms are BlindHide, HideSeek, FilterFirst, and BattleSteg (Hempstalk, 2005). 

 

Similar to the steganographic tools, the choice of steganalysis tools were made based on its availability as a free 
software, and also its approach. It is important to note that there are other more expensive commercial 
steganalysis tools, such as StegAnalyzerSS (Steganography Analyzer Signature Scanner) by Backbone Security 
(2007).  According to Backbone Security (2007), StegAnalyzerSS scans for unique hexadecimal byte patterns or 
known signature patterns in order to detect the steganography. But for this evaluation, two freely available tools 
were chosen. The first one is Stegdetect developed by Niels Provos and it can detect jsteg, jphide, invisible 
secrets, outguess 01.3b, F5 (header analysis), appendiX and camouflage steganographic schemes (Provos, 
2004). This tool will be used on JPEG images generated by Steghide and Outguess. The next steganalysis tool 
was developed by Guillermito to implement the chi-square analysis to perform a statistical attack and detect any 
hidden messages (Guillermito, 2004). It will be used on the BMP images generated by Steghide and DIIT. 

 

Table 2: Steganalysis Tools 
Tool Version Steganalysis Attack 

Stegdetect 0.6 JPEG image by Steghide and Outguess 

Chi-Square 0.1 BMP image by Steghide and DIIT 

 

The machine used to do the evaluation is based on Debian Linux. Therefore all the mentioned steganographic 
tools and steganalysis tools were obtained using the Debian repositories available on the Internet accept for the 
DIIT and Chi-Square. DIIT is provided as a JAR package from the website and Chi-Square is provided in EXE 
form compiled to run on Windows platform. However it was possible to use Wine to run the EXE file in the 
Linux environment. 

Verifying the tools 

In order to verify that the tools are doing what they claim they can do, it has to be verified using test data. The 
steganographic tools test, verifies that the tools are able to hide a secret message in a cover image, and is able to 
retrieve the exact message using that tool, which would confirm the steganographic process.  

 

In order to verify the steganographic tools, a sample text file was first created. The MD5 of the files was 
generated and recorded for later reference. All three steganographic tools were used to hide this text file in 
image files, and these tools were used to retrieve the hidden text file. The retrieved text files from each tool were 
used to generate their MD5 hashes, and was compared with the first MD5 hash that was generated. The results 
showed that they are all identical and was able to retrieve the exact data, that was hidden in the first place. 

 

The steganalysis tools test, verifies whether it can detect the presence of a hidden message, using test 
steganographic images. The test steganographic images to test Stegdetect was obtained from the Stegdetect 0.6 
source package available from the (Provos, 2004), and for the Chi-Square test, the images were obtained from 
(Guillermito, 2004). The source of each test steganographic image is the same source as the actual 
steganographic tool, therefore this guarantees the authenticity of the test images. 

 



Table 3: Steganalysis Tools Verification Tests 
# Image MD5 hash Output 

1 

(testimg.jpg found in 
http://www.outguess.org/steg

detect-0.6.tar.gz) 

before: 
01a77444369f4de7c7e3aea597f30
324  
 
after: 
01a77444369f4de7c7e3aea597f30
324  

$ stegdetect testimg.jpg  
testimg.jpg : jphide(***)  

2 

(http://www.guillermito2.net/
stegano/tools/googlemondria

n.bmp) 

before: 
c4d2fc1028910ba53841ddaeb435d
05e 
 
after: 
c4d2fc1028910ba53841ddaeb435d
05e 
 

 

3 

(http://www.guillermito2.net/
stegano/tools/googlemondria

n_02k.bmp) 

before: 
b2b15002f0b23b741c84c0bb0fdf5
3f7 
 
after: 
b2b15002f0b23b741c84c0bb0fdf5
3f7 

 

 

In the above table (table 3), the first entry shows the Stegdetect test on the image testimg.jpg, which was 
obtained from the  stegdetect-0.6.tar.gz source package and the test shows that jphide was used to embed a 
secret in it. The second and third test shows the Chi-Square test. Since the output is in the form of a graph, the 
test was carried out on a plain image with nothing embedded in it, which is the second entry. The third entry is 
the same image with 2KB of data embedded in it. According to Guillermito (2004), the red line (bottom line in 
entry 2 output) is the result of the chi-square test and if it is close to 1, then it shows that there is a high 
probability of an embedded message. If the green curve (collection of dots) is close to 0.5, then again it shows 
that there is a random message embedded. And lastly, the vertical blue lines indicate intervals of 1KB. As it can 
be seen, In entry 2, the red line is on 0 (zero) and the green curve is spread out. In entry 3, the red line is on 1 
until the 2KB interval and the green curve is also close to 0.5 until the 2KB interval. These tests verify that both 
the steganalysis tools are working.  

Obtain cover image 

The cover image was first acquired using a Digital Camera. The image was originally in JPEG format in 
680x480 resolution. Since a BMP image was also required for the evaluation, a second image in BMP format 
was generated using the same JPEG image using Gimp. Once both the cover images have been obtained, the 
MD5 hashes for both the images were created. As it can be seen in the following table (table 4), they are 
different, because they use different compression algorithms. 

 



Table 4: Cover Images 
flower.jpg flower.bmp 

 

 

MD5: f34cc0ae3fb2a1c9be2faa674a2812d0 MD5: de24e73fd06702f577495af16eea7ddb 

Steganalysis of cover image 

Steganalysis is done on the cover images, to ensure that there are no hidden messages embedded in the first 
place. Even though, in this particular case, there is knowledge that there are no messages hidden, it is a 
necessary step to make the process forensically sound. 

 

Table 5: Stegdetect Test on flower.jpg 
MD5 after test: f34cc0ae3fb2a1c9be2faa674a2812d0 

Output: 
$ stegdetect flower.jpg  
flower.jpg : negative  

 

Table 6: Chi-Square Test on flower.bmp 
MD5 after test: de24e73fd06702f577495af16eea7ddb 

Output: 

 

As seen in table 5, the Stegdetect test is negative for any embedded messages. However the Chi-Square test 
output shows all the characteristics of a graph that would show high probability of random embedded message. 
This is definitely a false positive, therefore it would be pointless to continue with this BMP image. The output 
might have been because the original BMP image contains too much random data. Another BMP image is 
needed and to avoid the same situation, the BMP image was created from scratch using Gimp. 

 

As it can be seen in table 7, the new BMP image constructed from scratch satisfies the test as a clean image with 
no embedded messages. Although it maybe unlikely that an actual user would go through this process of 
creating an image from scratch in order to hide a message, this has been done for the sake of this evaluation to 
proceed by using a valid cover image, with respect to the Chi-Square test. 

 

Once the steganalysis was carried out on the cover images, MD5 hashes were generated for each image and 
compared with the original hashes. The comparisons reveal that the steganalysis process did not alter the image 
as the hashes match.



Table 7: New BMP cover image 

newbmp.bmp 

MD5 before test: 9b190be2345100aebad2493e0d915522 

Output: 

 

MD5 after test: 9b190be2345100aebad2493e0d915522 

Generate steganographic image 

Each image was embedded with and without passwords for the encryption of the hidden message. The hidden 
message in the following cases are text files of different sizes. Different sizes have been used due to the different 
input requirements of the steganographic tools. Once the steganographic image was created, MD5 hashes of 
each image reveal that they have indeed been altered by the steganographic process.  

 
$ steghide embed -cf flower.jpg -ef msg_small.txt -sf 
steghide_np_flower.jpg  
Enter passphrase:  
Re-Enter passphrase:  
embedding "msg2.txt" in "flower.jpg"... done  
writing stego file "steghide_np_flower.jpg"... done  

Figure 1: Steghide Process for JPEG images 

The above figure (figure 1) shows the process of creating a steganographic image “steghide_np_flower.jpg” by 
using Steghide, using the cover image “flower.jpg”, and secret message in “msg_small.txt” file. No passphrases 
were entered. Another steganographic image was created by using a passphrase with the above process, to 
generate “steghide_wp_flower.jpg”. The following figure (figure 2) shows the Steghide process for generating 
the BMP file. Similar to the previous method, “steghide_np_newbmp.bmp” was generate without a passphrase, 
where as “steghide_wp_newbmp.bmp” was generated using a passphrase. 

 
$ steghide embed -cf newbmp.bmp -ef msg_big.txt -sf 
outguess_np_newbmp.bmp  
Enter passphrase:  
Re-Enter passphrase:  
embedding "msg_big.txt" in "newbmp.bmp"... done  
writing stego file "steghide_np_newbmp.bmp"... done 

Figure 2: Steghide Process for BMP images 

The following (figure 3) is the process of generating the steganographic image using Outguess. The same cycle 
was followed by generating with and without passphrases as “outguess_wp_flower.jpg” and 
“outguess_np_flower.jpg” respectively. 

 
Reading flower.jpg....  
JPEG compression quality set to 75  
Extracting usable bits:   36976 bits  
Correctable message size: 12962 bits, 35.06%  
Encoded 'msg_smallest.txt': 7912 bits, 989 bytes  
Finding best embedding...  
    0:  3916(49.3%)[49.5%], bias  4169(1.06), saved:     5, 
total: 10.59%  
    5:  3876(48.8%)[49.0%], bias  4125(1.06), saved:    10, 



total: 10.48%  
   30:  3882(48.9%)[49.1%], bias  4113(1.06), saved:     9, 
total: 10.50%  
   47:  3898(49.1%)[49.3%], bias  4083(1.05), saved:     7, 
total: 10.54%  
   56:  3901(49.1%)[49.3%], bias  4048(1.04), saved:     6, 
total: 10.55%  
   99:  3883(48.9%)[49.1%], bias  3981(1.03), saved:     9, 
total: 10.50%  
99, 7864: Embedding data: 7912 in 36976  
Bits embedded: 7944, changed: 3883(48.9%)[49.1%], bias: 3981, 
tot: 36927, skip: 28983  
Foiling statistics: corrections: 1788, failed: 3, offset: 
92.138055 +- 203.759058  
Total bits changed: 7864 (change 3883 + bias 3981)  
Storing bitmap into data...  
Writing outguess_np_flower.jpg....  

Figure 3: Outguess process 

The next tool that is used is DIIT. The following is a screenshot (figure 4) of the GUI of the tool. As it can be 
seen, it also provides an option to enter a password for encryption. Like the previous processes, in this process 
also, steganographic images were created with and without passwords as “diit_wp_newbmp.bmp” and 
“diit_np_newbmp.bmp” respectively. 

 

 

After each process, the MD5 hash was generated for original and the steganographic images. The following 
figure (figure 5) shows the MD5 hashes for all the images involved the Steghide, Outguess, and DIIT 
steganographic processes. 

 
f34cc0ae3fb2a1c9be2faa674a2812d0  flower.jpg  
 
4c2a9fb3860b299460a4be912a806437  steghide_np_flower.jpg  
cdac07608cdf45f1e62ab96086dc362e  steghide_wp_flower.jpg  
 
e7cd6d440badb0404db9e02f1c2dd9c6  outguess_np_flower.jpg  
bbd68076246b513669e94180ee02ee5b  outguess_wp_flower.jpg  
 
9b190be2345100aebad2493e0d915522  newbmp.bmp  
 

 
Figure 4: DIIT Screenshot 

54b03c5c48e374f697abb2809c4d3222  steghide_np_newbmp.bmp  
a463186d7cbc0bfc1f1af13f2117c016  steghide_wp_newbmp.bmp  
 
01f4acd389266a01a07acba0153108a6  diit_np_newbmp.bmp  
fc914686e06b46e5672a1fdaea72c235  diit_wp_newbmp.bmp  

Figure 5: MD5 hashes 



As it can be seen, the original images (flower.jpg and newbmp.bmp) were not altered during the steganographic 
process and each of the resulting steganographic image is different from each other. 

Steganalysis of steganographic images 

The steganalysis is carried out using Stegdetect and Chi-Square. The following (figure 6) shows the result of 
Stegdetect on all the JPEG images. Once Stegdetect was carried out, MD5 hashes were generated for each JPEG 
image, but revealed that there were no changes. The result of the Stegdetect shows that, it was unable to detect 
the steganography of Steghide and Outguess. 

 
outguess_np_flower.jpg : negative  
outguess_wp_flower.jpg : negative  
steghide_np_flower.jpg : negative  
steghide_wp_flower.jpg : negative  

Figure 6: Stegdetect Results 

The following (figure 7-10) are the results of Chi-Square analysis on the BMP images. As it can be seen, the 
results cannot confirm the presence of a hidden message. 

 

Figure 7: Chi-Square Result for Steghide (no passphrase) 

 

Figure 8: Chi-Square Result for Steghide (with passphrase) 

 

Figure 9: Chi-Square Result for DIIT (no passphrase) 

 

Figure 10: Chi-Square Result for DIIT (with passphrase) 

 

None of the tools were able to positively identify the existence of hidden information. The messages were 
embedded in plain and encrypted form. The MD5 hashes show that the resulting images are different when the 
encryption is used by providing the passphrase during the steganographic process. However, the steganalysis 
was unable to recognise the existence of the hidden messages. 

 

CONCLUSION 
From the information that has been presented in this paper, it would be difficult to come to a firm conclusion 
regarding the state of steganalysis tools. Since it is not an extensive research with large amounts of data sets, it 
would be arguable if such a conclusion is made. However, it can be said that steganalysis is not as straight 



forward or convenient as steganography. This translates to a great deal of advantage for those who hide secrets 
using steganography. And a huge disadvantage for the forensic analysts, who has the challenge of detecting and 
retrieving the hidden messages without destroying it. 

 

Furthermore, it is also apparent that steganalysis fails when such tools are applied to detect steganographic 
techniques it wasn't designed to detect. It has also been observed that, false positives are also possible when 
generic techniques are used to detect factors such as randomness of LSB. Perhaps with more data and research, 
these tools can be enhanced to be more effective and accurate. 

 

As steganographic tools are easily available in different varieties for anyone who intend to keep or communicate 
secrets, and with the emerging signs of its use in different arenas, forensic analysts face new challenges in their 
investigations. Criminals would indeed exploit every opportunity available to ensure the success of their plans. 
This could involve mass distribution of terror plans over the Internet or even more covert means of transmitting 
and storing illegal content on a portable storage devices. 

 

Whatever the case maybe, it cannot be denied that there is a need to be concerned about the current state of 
forensic knowledge and tools available in this particular area of computer science. Perhaps it is because of a lack 
of interest among academics and other stakeholders due to less encouraging results of current research. Or it 
maybe because there is an unrealistic expectation of a magic pill to this problem. Nevertheless, as Johnson and 
Jajodia (1998) has mentioned, developments in steganalysis techniques will be extremely useful for law 
enforcement authorities in computer forensics, and an urgently needed development. 
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